Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation.

نویسندگان

  • Tong Zhu
  • Xiao He
  • John Z H Zhang
چکیده

Fragment density functional theory (DFT) calculation of NMR chemical shifts for several proteins (Trp-cage, Pin1 WW domain, the third IgG-binding domain of Protein G (GB3) and human ubiquitin) has been carried out. The present study is based on a recently developed automatic fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach but the solvent effects are included by using the PB (Poisson-Boltzmann) model. Our calculated chemical shifts of (1)H and (13)C for these four proteins are in excellent agreement with experimentally measured values and represent clear improvement over that from the gas phase calculation. However, although the inclusion of the solvent effect also improves the computed chemical shifts of (15)N, the results do not agree with experimental values as well as (1)H and (13)C. Our study also demonstrates that AF-QM/MM calculated results accurately reproduce the separation of α-helical and β-sheet chemical shifts for (13)C(α) atoms in proteins, and using the (1)H chemical shift to discriminate the native structure of proteins from decoys is quite remarkable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Fragment density functional theory calculation of NMR chemical shifts for proteins with implicit solvation.

This does not affect the other results presented in the paper. We are grateful to Professor Jan Jensen for bringing this issue to our attention. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers. Table 2 Comparison of AF-QM/MM and experimental chemical shifts for the H, Ca, C, and N atoms in GB3. (G.: gas phase; S.: in solution. T...

متن کامل

Thermodynamics, Solvents effects and 1H ,13C NMR Shielding :Theoretical studies of Adamantane

Some of the Adamantane properties were calculated in this study. Chemical shift, free energy ofsolvation, free energy of cavity formation, Henry's law constant, and other properties ofAdamantane in dry phase, three solvents and three temperatures have been calculated with Abinitio method base on density functional theory (DFT) at B3lyp/6-31g, B31yp/6-31g*, B3lyp/6-31+g* and B3lyp/6-31++g** leve...

متن کامل

A hybrid density functional theory (DFT) and ab initio study of α-Acyloxycarboxamides Derived from Indane-1, 2, 3-trione

α-acyloxycarboxamides are synthesized from three component Passerini reaction between indane-1,2,3-trione, isocyanides, and thiophenecarboxylic acids in quantitative yields. The structures of the final products were confirmed by IR, 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. The B3LYP/HF calculations for computation of 1H an...

متن کامل

Ab Initio Calculation 29Si NMR Chemical Shift Studies on Silicate Species in Aqueous and Gas Phase

Nowadays NMR spectroscopy becomes a powerful tool in chemistry because of the NMR chemical shifts. Hartree–Fock theory and the Gauge-including atomic orbital (GIAO) methods are used in the calculation of 29Si NMR chemical shifts of various silicate species in the silicate solution as initial components for zeolite synthesis both in gas and solution phase. Calculations have been performed at geo...

متن کامل

Theoretical investigation of the implicit effects water molecules and resonance interactions on structural stability and NMR tensors of hallucinogenic harmine by density functional calculations

Abstractl Density functional theory (DFT) was used to investigate the effects of intra-moecular interactions and implicit water molecules on the relative stability and the NMR shielding tensors of hallucinogenic harmine in the monomeric and dimeric states. Results represented that the relative stability and the NMR shielding tensors are dependent on the resonance interactions and chemical envir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 21  شماره 

صفحات  -

تاریخ انتشار 2012